

XSDs Are Not Enough: Leveraging
Telco’s Abstract SID Information
Model for an SOA

Table of Contents

Introduction... 3
SID: Promise and Challenge .. 3
SID: Extensions Required .. 4
Deriving Concrete Data .. 4
Mapping Data to the SID Model ... 5
Defining Enumerations... 7
Defining Validity Constraints... 7
Performing Calculations .. 7
Challenges of Extending the SID Model ... 7

Modifying the SID Model... 7
Defining Subclasses ... 8

DataXtend Semantic Integrator: Managing Adaptation and Change of the SID...................................... 9
Case 1: Home Telephone Number..10
Case 2: VAT Registration Number..12
Case 3: Customer ID..13
DataXtend Semantic Integrator Benefits ...15

XSDs Are Not Enough

Page 2 of 16

Introduction

With the Shared Information/Data (SID) model, the TeleManagement
Forum (TM Forum) has developed a common language for enterprise
operations in the telecommunications industry. The TM Forum added XML
Schema Definition (XSD) representations to the original Unified Modeling
Language (UML) definitions for the SID model. The SID XSDs are an
important advance, providing the basis for developing reusable data
models for integrated business applications. But the XSDs are just the
beginning. In real-world applications, the XSDs will have to be altered
and enhanced. The need to change, develop, and maintain the XSDs
presents challenges that cannot be resolved easily without additional
tools. Progress® DataXtend™ Semantic Integrator (SI) provides key
support for building robust integrations that gain the value of the SID as
a common data model to promote speed, agility, reuse, and data quality
in integration projects for operational and business support systems
(OSS/BSS).

The challenges of using the SID model in OSS/BSS integrations can be
divided into two parts:

1. Extending and enhancing the SID model itself

2. Using the SID in the context of OSS/BSS integrations

This paper discusses part one: the need to modify, extend, and update
the SID model and the role of DataXtend SI in making those changes
faster, easier, and more maintainable.

SID: Promise and Challenge
The SID model is a central component of the TM Forum’s Next Generation
Operations Systems and Software (NGOSS) initiative. The goal of NGOSS is to
promote open, distributed OSS systems using commercial off-the-shelf
technology. NGOSS provides a technology-neutral architectural framework for
cooperation among distributed applications, using contracts to govern their
interactions. A contract is an agreement between two components about how
they will cooperate — not only the interfaces they will use, but the business
processes and management capabilities they require.

Although they constitute a framework for interaction, NGOSS contracts do not
solve the problem of semantic incompatibility and ambiguity among integrated

XSDs Are Not Enough

Page 3 of 16

components. This is where the SID comes in. It provides a common language to
represent business and data constructs and promote semantic interoperability
between components of an OSS integration. Using UML, the SID model
supports business, system, implementation, and deployment views of an
integration project. Comprising nearly 1,000 classes, the SID model ranges from
very general concepts like the OpenGIS geometrical elements of points, curves,
and surfaces to very specific concepts like the wide-area network (WAN)
protocols PPP and X25.

The SID model is designed to be flexible enough to apply to any reasonable
OSS process. It is also independent of any particular implementation. The price
of this generality is that the SID requires adaptation and extension when used as
a data model in a real-world integration.

Fortunately, two developments have laid the groundwork for using the SID as a
model in enterprise applications. The first is the TM Forum’s release of the SID
XSDs. The second is the development of OSS through Java (OSS/J) APIs. This
combination enables telecommunications providers to implement interoperable
data services on J2EE-based application servers.

The SID XSDs do not eliminate the need to extend and adapt the SID model in
real-world integrations. Application developers who want to use the SID model
immediately find themselves asking questions. What is the best model for
extending the SID? How can we preserve reuse and keep maintenance costs
under control? What tools are available to help?

SID: Extensions Required
The SID is an excellent reference model, but using it in an integration project
presents challenges. In a typical integration, a customer relationship
management (CRM) system may interact with order and inventory systems.
Each of these may have multiple data sources and message formats. For
instance, even a simple order system is likely to have different order and invoice
formats for residential and business customers. Mapping the specific data
elements of these messages to the SID model is a complex task with several
common problems to overcome.

Deriving Concrete Data
The SID model makes extensive use of abstract classes with concrete subclasses.
Sometimes abstract models require several steps to navigate to specific data
elements.

For example, operations in an ordering or provisioning system might require a
customer’s home telephone number. In the SID model, Customer is a concrete
subclass of the abstract class PartyRole. From PartyRole, Customer inherits a
collection of ContactMediums. ContactMedium is abstract; one of its concrete
subclasses is TelephoneNumber. TelephoneNumber has a type attribute that can
be used to distinguish a home number from, say, a mobile number.

XSDs Are Not Enough

Page 4 of 16

Figure 1. SID Class Relations for Customer and TelephoneNumber

In the case of home telephone number, the SID model has a class
(TelephoneNumber) that represents the data we need. In other cases, the SID
model has an abstract class that represents a more general concept, but the
concrete data type is missing. For example, the SID model has no value-added
tax (VAT) registration number. It does have an abstract class
OrganizationIdentification, but we would need to define a concrete subclass of
that class to use it to represent the VAT registration number.

Mapping Data to the SID Model
The SID model is modular, with separate but associated packages representing
such concepts as customer, product, service, business interaction, and the like. In
a typical OSS integration, messages contain data that corresponds to several of
these domains. Mapping such messages to the SID model presents challenges.

For example, a typical product order message contains, at minimum, an
identifier for the customer. In the SID model, the Customer class has an ID
attribute that we would want to map to the customer identifier in the order
message. But the path from the ProductOrder class to the Customer class,
illustrated in Figure 2, traverses two associations and involves five
generalization (subclassing) relationships.

XSDs Are Not Enough

Page 5 of 16

Figure 2. Class Relations from ProductOrder to Customer

Suppose we now need to retrieve the customer name for a downstream
operation. This requires traversing two more associations from the Customer
class, involving two subclass relationships, as illustrated in Figure 3.

Figure 3. Class Relations from Customer to OrganizationName

XSDs Are Not Enough

Page 6 of 16

Defining Enumerations
 Most schema definitions include many enumeration types. Often, these
definitions are accompanied by spreadsheets that detail the values for these
enumerations. The SID model contains no enumerations. For example, the type
attribute for the TelephoneNumber class needs an enumeration to identify such
types as home, business, and mobile number, but this enumeration is not defined
in the SID. Any integration using the SID needs to define enumerations and map
them to enumerations in other formats, many of which are likely to have
differing sets of values.

Defining Validity Constraints
Many of the challenges in ensuring data quality come down to enforcing
constraints on data that are not explicit in the model, often because the
constraints require comparison of two or more data elements. One example from
the SID involves the ContactMedium class. Each ContactMedium has an
associated time period during which the contact medium is valid. The
TimePeriod has a lower value and an upper value. But there is no expression of
the constraint that the lower value must be an earlier date than the upper value
— that is, that the start date of the validity interval must be earlier than the end
date.

It might be possible to express such constraints using UML’s object constraint
language (OCL), but the question remains how to translate these constraints to
code and enforce them in the integration. Further, OCL has not reached the
mainstream of development, as compared to Java or C#.

Performing Calculations
A typical business process requires calculations using data supplied in messages
or data sources. A simple example is age, usually computed by comparing the
current date with an individual’s birth date — and ensuring that the birth date is
earlier than the current date. Other common computations are financial
calculations, such as available credit balance, and Boolean classifications, like
“has credit approval.”

It is often desirable to make calculated results available within the data model so
that they can be mapped to messages or used as intermediate results for other
computations or integrity constraints.

Challenges of Extending the SID Model
Given the need to elaborate the SID model, what is the best approach to
extending it? We’ll consider several tacks, all of which have inadequacies.

Modifying the SID Model
There is nothing to prevent us from simply changing the SID UML or XSD
model to accommodate the particular needs of a business process. For instance,
if we need a new attribute for a customer, we can add the attribute directly to the
Customer class in the model. One drawback of this approach becomes evident as

XSDs Are Not Enough

Page 7 of 16

soon as a new version of the SID model is released. How do we keep track of all
the modifications we have made, apply the new version of the model, and then
re-implement all the modifications in the new version?

Defining Subclasses
A more sophisticated way to extend the model is to define subclasses of existing
classes. However, this approach has problems that can make subclass definition
unwieldy.

Consider an example. The SID has an abstract class PartyRole that defines
characteristics of the role played by any party (individual or organization) in an
interaction. The SID has a more specialized class, Customer, which is a subclass
of PartyRole.

Suppose we want to add some enterprise-specific attributes of Customer that are
not defined in the SID Customer class. We can define a subclass of Customer,
which we’ll call CustomerExtension. Now suppose we need to define some
enterprise-specific attributes for all party roles. We can define a subclass of
PartyRole, which we’ll call PartyRoleExtension.

Figure 4. Extending the SID Model by Subclassing

But now we have a problem. Our CustomerExtension class inherits from the
SID Customer class, which in turn inherits from PartyRole. But we want our
CustomerExtension class to inherit the characteristics we defined in our
PartyRoleExtension class. We might consider making CustomerExtension
inherit from both Customer and PartyRoleExtension. But many programming
languages that could implement the model, including Java, do not allow a class
to have more than one superclass (multiple inheritance).

A second approach would be to make our CustomerExtension class inherit
directly from our PartyRoleExtension class. But then CustomerExtension would
no longer inherit the characteristics of the SID Customer class. We would need
to duplicate those attributes in our CustomerExtension class. And when the next
version of the SID appeared, we would have to be careful to duplicate any
changes that the new version of the SID made to its Customer class.

XSDs Are Not Enough

Page 8 of 16

DataXtend Semantic Integrator: Managing
Adaptation and Change of the SID
DataXtend Semantic Integrator maintains the advantages of using the SID as a
central data model while facilitating definition and management of extensions.
The basic features of the DataXtend SI approach are as follows:

⇒ Rapid creation of a common data model by importing either UML or XSD
representations

⇒ Rapid creation of data sources (based on relational databases or Web
services) and data services by importing database schemas, XSDs, or Web
Services Description Language (WSDL) documents

⇒ Definition of calculated values as computed attributes and of validity
constraints as rules, both using a graphical expression builder accessible to
both developers and business analysts

⇒ Definition and reuse of enumerations

⇒ Graphical mapping between the common model, data sources, and data
services

⇒ Record keeping for all changes and additions made to imported models,
coupled with the ability to re-import new versions of the underlying
models while maintaining changes made in earlier versions

⇒ Design-time testing without deployment to a server

Using DataXtend SI, you can change and extend the SID model in natural ways,
usually without writing any custom Java code:

⇒ Define new attributes for existing classes, or change the types of existing
attributes

⇒ Define new classes or subclasses in the model

⇒ Define rules, enumerations, and mappings to and from other message
formats

In DataXtend SI, this complex set of models, rules, and mappings that ensure
data validity for an integration project is captured as metadata and is collectively
known as the exchange model. In the DataXtend SI design environment,
DataXtend SI Designer, your extensions and changes appear in the context of
the SID model. However, DataXtend SI keeps track of the changes you have
made. When you import a new version of the SID, DataXtend SI updates the
underlying SID definitions without affecting the changes and extensions you
have made. DataXtend SI thus maintains the integrity of the underlying SID
model, and your changes are like a transparent overlay on top of that model.
DataXtend SI also analyzes the impact of changes you are considering on other
parts of the model. In this way, DataXtend SI combines the ability to extend the
SID with ease of maintenance as the SID model itself changes.

Figure 5 shows the DataXtend SI design environment, DataXtend SI Designer,
integrated with Eclipse.

XSDs Are Not Enough

Page 9 of 16

Figure 5. DataXtend SI Designer Integrated with Eclipse

Case 1: Home Telephone Number
Compare the derivation and mapping of a customer’s home telephone number
using Java code and using DataXtend SI. In Java (or another language), mapping
home telephone number requires something like the following pseudocode:
1. getCustomer().getContactMediums()

2. iterate through all ContactMediums

3. for each ContactMedium that is instanceOf TelephoneNumber:

• cast ContactMedium to TelephoneNumber

• if the following the following conditions are met:

o today() is between validFor.startDateTime and

validFor.endDateTime

o TelephoneNumber.type is HomeNumber

• then map the TelephoneNumber.number to home_telephone_number

In DataXtend SI, we can implement home telephone number as a new computed
attribute, currentHomeTelephoneNumber, of the Customer class. Using the
DataXtend SI expression builder, we define an expression to compute home
telephone number. The expression looks like this:
Select: All Values

From: PartyRoleContactableVia/asTelephoneNumber

Where: (type = "Home" and

validFor/startDateTime <= today() and

validFor/endDateTime >= today())

Value Is: number

XSDs Are Not Enough

Page 10 of 16

Figure 6. DataXtend SI Editor Showing Computed Attribute Expressions

This expression uses the Select-From-Where construct of the DataXtend SI
expression builder, one of several that build expressions in an intuitive way. In
this construct, the From clause specifies a path to a collection, and the Where
clause specifies a filter for choosing elements of the collection. The expression
builder syntax includes navigation of the model’s relationship (association)
paths and access to all subclasses of a class.

The DataXtend SI approach offers the following features:

⇒ The logic for computing home telephone number is part of the common
model, where it is available for reuse.

⇒ The attribute is defined once and, like any other attribute, can be mapped to
any number of data sources or data services.

⇒ The semantics of checking for valid start and end dates is included with the
definition.

⇒ We could break the definition into finer components if we anticipated
extending the definition to, say, business and mobile telephone numbers.
For example, we could define a separate computed attribute on the
TimePeriod class called “isCurrentTimePeriod” for checking validity dates
and reuse that computed attribute in defining business and mobile
telephone numbers.

⇒ The DataXtend SI expression builder does not require a Java programmer
to define the expressions. DataXtend SI generates optimized Java code
automatically from the expressions.

XSDs Are Not Enough

Page 11 of 16

Case 2: VAT Registration Number
In a programming language like Java, mapping a VAT registration number to
the SID model requires something like the following pseudocode:
1. define a subclass, VatIdentification, of the OrganizationIdentification class

2. add a VatNumber attribute to VatIdentification

3. getCustomer().getParty()

4. cast Party to Organization

5. getOrganizationIdentifications()

6. for each OrganizationIdentification that is instanceOf VatIdentification:

• cast OrganizationIdentification to VatIdentification

• if the following condition is met:

o today() is between validFor.startDateTime and

validFor.endDateTime

• then map the VatIdentification.VatNumber to vat_number

Using DataXtend SI, we can implement the VAT number itself as a new
attribute of the OrganizationIdentification class or, for greater generality, as a
new attribute of its superclass, PartyIdentification. We call this new attribute
identifierValue. We also define another attribute, identifierType, to identify the
value as a VAT number. We can then add a new computed attribute to the
Organization class, vatIdentificationNumber, which uses the following
expressions to return the VAT number:
Select: All Values

From: OrganizationIdentifiedBy

Where: (identifierType = "VatRegistration" and

validFor/startDateTime <= today() and

validFor/endDateTime >= today())

Value Is: identifierValue

Figure 7. Defining a New Computed Attribute in DataXtend SI Designer

XSDs Are Not Enough

Page 12 of 16

As a further refinement, we can reduce errors by defining an extensible
enumeration to hold values for identifierType.

The DataXtend SI approach has the same benefits in this case as for home
telephone number. The VatIdentificationNumber attribute is defined in the
common model, without using Java, and is available for mapping to and from
other message formats.

Case 3: Customer ID
In Java, mapping a customer ID from a product order to the customer ID in the
SID models requires something like the following pseudocode:
1. getProductOrder().getBusinessInteractionRoles()

2. iterate through all BusinessInteractionRoles

3. for each BusinessInteractionRole that is instanceOf PartyInteractionRole:

• cast BusinessInteractionRole to PartyInteractionRole

• getPartyRole()

• if the following the following conditions are met:

o today() is between validFor.startDateTime and

validFor.endDateTime
o PartyRole is instanceOf() Customer

• then:
o cast PartyRole to Customer
o map the Customer.id to customer_id

Using DataXtend SI, we can define a computed attribute on the ProductOrder
class to represent the customer identified by the customer ID in the order. The
expression for this computed attribute, named OrderingCustomer, looks as
follows:

Select: All Values
From: BusinessInteractionInvolves/asPartyInteractionRole/

PartyInteractionRoleIdentifiedBy/asCustomer

Where: validFor/startDateTime <= today() and

validFor/endDateTime >= today())

Value Is: customer

Notable in the From clause are the two subclass designators,
asPartyInteractionRole and asCustomer. DataXtend SI Designer makes all
subclasses available for navigation and mapping. Figure 8 shows how the
DataXtend SI expression builder displays paths through subclass relationships.

XSDs Are Not Enough

Page 13 of 16

Figure 8. Navigating through Subclass Relationships

Defining a computed attribute on the ProductOrder class to represent the
ordering customer makes it easy to map from the customer identifier in the order
message directly to the customer ID in the SID model. Figure 9 illustrates
DataXtend SI’s graphical mapping interface showing the mapping for customer
ID from the order message to the SID model via the OrderingCustomer
computed attribute on the ProductOrder class.

XSDs Are Not Enough

Page 14 of 16

F
i
g
u
r
e

9
.

M
a
p
p
i
n
g

f
o
r

C
u
s
t
o
m
e
r

o

S
I
D

Figure 9. Mapping for Customer ID from Order Message to SID Model

DataXtend Semantic Integrator Benefits
The TMForum SID model promises to help telecommunications providers
simplify OSS integrations by providing a common semantic model for mapping
and transforming data. But the SID is not a panacea. In real-world applications,
it must be modified and extended.

DataXtend Semantic Integrator provides the design and runtime environment
that makes use and extension of the SID model manageable and cost effective.
DataXtend SI offers the following benefits:

⇒ Implementation of the SID as a single reusable common model.

⇒ Rapid creation of common, data source, and data service models through
the import of UML, XSD, and WSDL representations.

⇒ Definition of computed data and rules for validity constraints using
graphical expressions, usually without Java code.

XSDs Are Not Enough

Page 15 of 16

⇒ Graphical mapping of attributes between the common model and other
message formats, with the ability to define custom source expressions
where needed.

⇒ Integration of extensions into the SID-based common model.

⇒ Modular addition and change of integrated systems requiring only mapping
to the common model, without changing all other systems in the
integration.

⇒ Ability to incorporate new versions of the SID by re-importing the model
while maintaining user-defined changes.

⇒ Tools to analyze the impact of modifications and better manage the costs
of change over the integration lifecycle.

⇒ Capability to model errors and define recovery paths, providing more
satisfying and reliable user experiences.

About Progress Software Corporation

Progress Software Corporation (Nasdaq: PRGS) provides application
infrastructure software for the development, deployment, integration and
management of business applications. Our goal is to maximize the benefits of
information technology while minimizing its complexity and total cost of
ownership. Progress can be reached at www.progress.com or +1-781-280-4000.

w w w . p r o g r e s s . c o m / d a t a x t e n d

Worldwide and North American Headquarters
Progress Software, 14 Oak Park, Bedford, MA 01730 USA Tel: +1 781 280 4000

UK and Northern Ireland
Progress Software, 210 Bath Road, Slough, Berkshire, SL1 3XE England Tel: +44 1753 216 300

Central Europe
Progress Software, Konrad-Adenauer-Str. 13, 50996 Köln, Germany Tel: +49 6171 981 127

© 2006 Progress Software Corporation. All rights reserved. Progress and DataXtend are trademarks or registered trademarks of Progress Software
Corporation, or any of its affiliates or subsidiaries, in the U.S. and other countries. Any other trademarks or service marks contained herein are the
property of their respective owners. Specifications subject to change without notice. Visit www.progress.com for more information.

XSDs Are Not Enough

Page 16 of 16

	SID: Promise and Challenge
	SID: Extensions Required
	Deriving Concrete Data
	Mapping Data to the SID Model
	Defining Enumerations
	Defining Validity Constraints
	Performing Calculations
	Challenges of Extending the SID Model
	Modifying the SID Model
	Defining Subclasses
	DataXtend Semantic Integrator: Managing Adaptation and Change of the SID
	Case 1: Home Telephone Number
	 Case 2: VAT Registration Number
	Case 3: Customer ID
	DataXtend Semantic Integrator Benefits

